Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
1.
Cell Rep ; 37(13): 110169, 2021 12 28.
Article in English | MEDLINE | ID: covidwho-1616407

ABSTRACT

The importance of pre-existing immune responses to seasonal endemic coronaviruses (HCoVs) for the susceptibility to SARS-CoV-2 infection and the course of COVID-19 is the subject of an ongoing scientific debate. Recent studies postulate that immune responses to previous HCoV infections can either have a slightly protective or no effect on SARS-CoV-2 pathogenesis and, consequently, be neglected for COVID-19 risk stratification. Challenging this notion, we provide evidence that pre-existing, anti-nucleocapsid antibodies against endemic α-coronaviruses and S2 domain-specific anti-spike antibodies against ß-coronavirus HCoV-OC43 are elevated in patients with COVID-19 compared to pre-pandemic donors. This finding is particularly pronounced in males and in critically ill patients. Longitudinal evaluation reveals that antibody cross-reactivity or polyclonal stimulation by SARS-CoV-2 infection are unlikely to be confounders. Thus, specific pre-existing immunity to seasonal coronaviruses may increase susceptibility to SARS-CoV-2 and predispose individuals to an adverse COVID-19 outcome, guiding risk management and supporting the development of universal coronavirus vaccines.


Subject(s)
COVID-19/immunology , Coronavirus/immunology , SARS-CoV-2/immunology , Adult , Antibodies/immunology , Antibodies, Viral/immunology , COVID-19/etiology , Coronavirus Infections/immunology , Coronavirus OC43, Human/immunology , Coronavirus OC43, Human/pathogenicity , Cross Reactions/immunology , Female , Germany , Humans , Immunity, Humoral/immunology , Immunoglobulin G/immunology , Longitudinal Studies , Male , Middle Aged , Pandemics , SARS-CoV-2/pathogenicity , Seasons , Severity of Illness Index , Spike Glycoprotein, Coronavirus/immunology
2.
Cell reports ; 2021.
Article in English | EuropePMC | ID: covidwho-1565013

ABSTRACT

Wratil et al. find specific antibody responses against seasonal human coronaviruses, which cause the common cold, to be elevated in patients with COVID-19 compared to pre-pandemic blood donors. This specific immunity is likely pre-existing in patients and increases their susceptibility to SARS-CoV-2 and severity of COVID-19.

3.
Euro Surveill ; 26(43)2021 10.
Article in English | MEDLINE | ID: covidwho-1547185

ABSTRACT

BackgroundIn the SARS-CoV-2 pandemic, viral genomes are available at unprecedented speed, but spatio-temporal bias in genome sequence sampling precludes phylogeographical inference without additional contextual data.AimWe applied genomic epidemiology to trace SARS-CoV-2 spread on an international, national and local level, to illustrate how transmission chains can be resolved to the level of a single event and single person using integrated sequence data and spatio-temporal metadata.MethodsWe investigated 289 COVID-19 cases at a university hospital in Munich, Germany, between 29 February and 27 May 2020. Using the ARTIC protocol, we obtained near full-length viral genomes from 174 SARS-CoV-2-positive respiratory samples. Phylogenetic analyses using the Auspice software were employed in combination with anamnestic reporting of travel history, interpersonal interactions and perceived high-risk exposures among patients and healthcare workers to characterise cluster outbreaks and establish likely scenarios and timelines of transmission.ResultsWe identified multiple independent introductions in the Munich Metropolitan Region during the first weeks of the first pandemic wave, mainly by travellers returning from popular skiing areas in the Alps. In these early weeks, the rate of presumable hospital-acquired infections among patients and in particular healthcare workers was high (9.6% and 54%, respectively) and we illustrated how transmission chains can be dissected at high resolution combining virus sequences and spatio-temporal networks of human interactions.ConclusionsEarly spread of SARS-CoV-2 in Europe was catalysed by superspreading events and regional hotspots during the winter holiday season. Genomic epidemiology can be employed to trace viral spread and inform effective containment strategies.


Subject(s)
COVID-19 , Cross Infection , Cross Infection/epidemiology , Genome, Viral , Genomics , Germany/epidemiology , Hospitals , Humans , Phylogeny , SARS-CoV-2
4.
JCI Insight ; 6(18)2021 09 22.
Article in English | MEDLINE | ID: covidwho-1435144

ABSTRACT

Neutrophils provide a critical line of defense in immune responses to various pathogens, inflicting self-damage upon transition to a hyperactivated, procoagulant state. Recent work has highlighted proinflammatory neutrophil phenotypes contributing to lung injury and acute respiratory distress syndrome (ARDS) in patients with coronavirus disease 2019 (COVID-19). Here, we use state-of-the art mass spectrometry-based proteomics and transcriptomic and correlative analyses as well as functional in vitro and in vivo studies to dissect how neutrophils contribute to the progression to severe COVID-19. We identify a reinforcing loop of both systemic and neutrophil intrinsic IL-8 (CXCL8/IL-8) dysregulation, which initiates and perpetuates neutrophil-driven immunopathology. This positive feedback loop of systemic and neutrophil autocrine IL-8 production leads to an activated, prothrombotic neutrophil phenotype characterized by degranulation and neutrophil extracellular trap (NET) formation. In severe COVID-19, neutrophils directly initiate the coagulation and complement cascade, highlighting a link to the immunothrombotic state observed in these patients. Targeting the IL-8-CXCR-1/-2 axis interferes with this vicious cycle and attenuates neutrophil activation, degranulation, NETosis, and IL-8 release. Finally, we show that blocking IL-8-like signaling reduces severe acute respiratory distress syndrome of coronavirus 2 (SARS-CoV-2) spike protein-induced, human ACE2-dependent pulmonary microthrombosis in mice. In summary, our data provide comprehensive insights into the activation mechanisms of neutrophils in COVID-19 and uncover a self-sustaining neutrophil-IL-8 axis as a promising therapeutic target in severe SARS-CoV-2 infection.


Subject(s)
COVID-19/metabolism , Interleukin-8/metabolism , Lung/immunology , Neutrophils/immunology , SARS-CoV-2 , Thrombosis/etiology , Animals , COVID-19/complications , COVID-19/pathology , Humans , Lung/pathology , Mice , Neutrophil Activation , Neutrophils/pathology , Phenotype , Thrombosis/pathology
5.
Lancet Respir Med ; 9(8): 863-872, 2021 08.
Article in English | MEDLINE | ID: covidwho-1340915

ABSTRACT

BACKGROUND: SARS-CoV-2 entry in human cells depends on angiotensin-converting enzyme 2, which can be upregulated by inhibitors of the renin-angiotensin system (RAS). We aimed to test our hypothesis that discontinuation of chronic treatment with ACE-inhibitors (ACEIs) or angiotensin II receptor blockers (ARBs) mitigates the course o\f recent-onset COVID-19. METHODS: ACEI-COVID was a parallel group, randomised, controlled, open-label trial done at 35 centres in Austria and Germany. Patients aged 18 years and older were enrolled if they presented with recent symptomatic SARS-CoV-2 infection and were chronically treated with ACEIs or ARBs. Patients were randomly assigned 1:1 to discontinuation or continuation of RAS inhibition for 30 days. Primary outcome was the maximum sequential organ failure assessment (SOFA) score within 30 days, where death was scored with the maximum achievable SOFA score. Secondary endpoints were area under the death-adjusted SOFA score (AUCSOFA), mean SOFA score, admission to the intensive care unit, mechanical ventilation, and death. Analyses were done on a modified intention-to-treat basis. This trial is registered with ClinicalTrials.gov, NCT04353596. FINDINGS: Between April 20, 2020, and Jan 20, 2021, 204 patients (median age 75 years [IQR 66-80], 37% females) were randomly assigned to discontinue (n=104) or continue (n=100) RAS inhibition. Within 30 days, eight (8%) of 104 died in the discontinuation group and 12 (12%) of 100 patients died in the continuation group (p=0·42). There was no significant difference in the primary endpoint between the discontinuation and continuation group (median [IQR] maximum SOFA score 0·00 (0·00-2·00) vs 1·00 (0·00-3·00); p=0·12). Discontinuation was associated with a significantly lower AUCSOFA (0·00 [0·00-9·25] vs 3·50 [0·00-23·50]; p=0·040), mean SOFA score (0·00 [0·00-0·31] vs 0·12 [0·00-0·78]; p=0·040), and 30-day SOFA score (0·00 [10-90th percentile, 0·00-1·20] vs 0·00 [0·00-24·00]; p=0·023). At 30 days, 11 (11%) in the discontinuation group and 23 (23%) in the continuation group had signs of organ dysfunction (SOFA score ≥1) or were dead (p=0·017). There were no significant differences for mechanical ventilation (10 (10%) vs 8 (8%), p=0·87) and admission to intensive care unit (20 [19%] vs 18 [18%], p=0·96) between the discontinuation and continuation group. INTERPRETATION: Discontinuation of RAS-inhibition in COVID-19 had no significant effect on the maximum severity of COVID-19 but may lead to a faster and better recovery. The decision to continue or discontinue should be made on an individual basis, considering the risk profile, the indication for RAS inhibition, and the availability of alternative therapies and outpatient monitoring options. FUNDING: Austrian Science Fund and German Center for Cardiovascular Research.


Subject(s)
Angiotensin Receptor Antagonists , Angiotensin-Converting Enzyme Inhibitors , COVID-19 , Hypertension , Renin-Angiotensin System , SARS-CoV-2 , Angiotensin Receptor Antagonists/administration & dosage , Angiotensin Receptor Antagonists/adverse effects , Angiotensin-Converting Enzyme 2/metabolism , Angiotensin-Converting Enzyme Inhibitors/administration & dosage , Angiotensin-Converting Enzyme Inhibitors/adverse effects , Area Under Curve , COVID-19/epidemiology , COVID-19/metabolism , COVID-19/therapy , Female , Humans , Hypertension/drug therapy , Hypertension/epidemiology , Male , Middle Aged , Organ Dysfunction Scores , Outcome and Process Assessment, Health Care , Renin-Angiotensin System/drug effects , Renin-Angiotensin System/physiology , Risk Adjustment/methods , SARS-CoV-2/drug effects , SARS-CoV-2/physiology , Severity of Illness Index , Withholding Treatment/statistics & numerical data
6.
Dtsch Med Wochenschr ; 146(13-14): 911-914, 2021 Jul.
Article in German | MEDLINE | ID: covidwho-1307357

ABSTRACT

More than one year ago COVID-19 emerged to a rapidly expanding global pandemic. Along with a growing number of individuals infected with SARS-CoV-2, we gained substantial knowledge on development, progression and treatment of the disease. In the light of increasing worldwide infection rates during the current "third wave", we will give a short update on COVID-19 from a cardiological point-of-view.


Subject(s)
COVID-19 , Cardiology , Cardiomyopathies/complications , Thromboembolism/complications , COVID-19/complications , COVID-19/therapy , Cardiomyopathies/therapy , Humans , Thromboembolism/therapy
7.
Circ Cardiovasc Imaging ; 14(1): e012220, 2021 01.
Article in English | MEDLINE | ID: covidwho-1035201

ABSTRACT

BACKGROUND: Myocardial injury, defined by elevated troponin levels, is associated with adverse outcome in patients with coronavirus disease 2019 (COVID-19). The frequency of cardiac injury remains highly uncertain and confounded in current publications; myocarditis is one of several mechanisms that have been proposed. METHODS: We prospectively assessed patients with myocardial injury hospitalized for COVID-19 using transthoracic echocardiography, cardiac magnetic resonance imaging, and endomyocardial biopsy. RESULTS: Eighteen patients with COVID-19 and myocardial injury were included in this study. Echocardiography revealed normal to mildly reduced left ventricular ejection fraction of 52.5% (46.5%-60.5%) but moderately to severely reduced left ventricular global longitudinal strain of -11.2% (-7.6% to -15.1%). Cardiac magnetic resonance showed any myocardial tissue injury defined by elevated T1, extracellular volume, or late gadolinium enhancement with a nonischemic pattern in 16 patients (83.3%). Seven patients (38.9%) demonstrated myocardial edema in addition to tissue injury fulfilling the Lake-Louise criteria for myocarditis. Combining cardiac magnetic resonance with speckle tracking echocardiography demonstrated functional or morphological cardiac changes in 100% of investigated patients. Endomyocardial biopsy was conducted in 5 patients and revealed enhanced macrophage numbers in all 5 patients in addition to lymphocytic myocarditis in 1 patient. SARS-CoV-2 RNA was not detected in any biopsy by quantitative real-time polymerase chain reaction. Finally, follow-up measurements of left ventricular global longitudinal strain revealed significant improvement after a median of 52.0 days (-11.2% [-9.2% to -14.7%] versus -15.6% [-12.5% to -19.6%] at follow-up; P=0.041). CONCLUSIONS: In this small cohort of COVID-19 patients with elevated troponin levels, myocardial injury was evidenced by reduced echocardiographic left ventricular strain, myocarditis patterns on cardiac magnetic resonance, and enhanced macrophage numbers but not predominantly lymphocytic myocarditis in endomyocardial biopsies.


Subject(s)
COVID-19/complications , COVID-19/pathology , Myocarditis/etiology , Myocarditis/pathology , Myocardium/pathology , Aged , Biopsy , COVID-19/blood , Cohort Studies , Echocardiography/methods , Female , Germany , Humans , Magnetic Resonance Imaging/methods , Male , Middle Aged , Myocarditis/diagnostic imaging , Prospective Studies , SARS-CoV-2 , Troponin/blood
8.
J Thromb Haemost ; 19(2): 574-581, 2021 02.
Article in English | MEDLINE | ID: covidwho-939789

ABSTRACT

OBJECTIVE: Infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) can lead to severe pneumonia, but also thrombotic complications and non-pulmonary organ failure. Recent studies suggest intravascular neutrophil activation and subsequent immune cell-triggered immunothrombosis as a central pathomechanism linking the heterogenous clinical picture of coronavirus disease 2019 (COVID-19). We sought to study whether immunothrombosis is a pathognomonic factor in COVID-19 or a general feature of (viral) pneumonia, as well as to better understand its upstream regulation. APPROACH AND RESULTS: By comparing histopathological specimens of SARS-CoV-2 with influenza-affected lungs, we show that vascular neutrophil recruitment, NETosis, and subsequent immunothrombosis are typical features of severe COVID-19, but less prominent in influenza pneumonia. Activated neutrophils were typically found in physical association with monocytes. To explore this further, we combined clinical data of COVID-19 cases with comprehensive immune cell phenotyping and bronchoalveolar lavage fluid scRNA-seq data. We show that a HLADRlow CD9low monocyte population expands in severe COVID-19, which releases neutrophil chemokines in the lungs, and might in turn explain neutrophil expansion and pulmonary recruitment in the late stages of severe COVID-19. CONCLUSIONS: Our data underline an innate immune cell axis causing vascular inflammation and immunothrombosis in severe SARS-CoV-2 infection.


Subject(s)
COVID-19/immunology , Immunity, Innate , Influenza, Human/immunology , Lung/immunology , Neutrophils/immunology , Thrombosis/immunology , Vasculitis/immunology , COVID-19/diagnosis , COVID-19/virology , Diagnosis, Differential , Host-Pathogen Interactions , Humans , Influenza, Human/diagnosis , Influenza, Human/virology , Lung/pathology , Lung/virology , Neutrophils/virology , Predictive Value of Tests , SARS-CoV-2/immunology , SARS-CoV-2/pathogenicity , Thrombosis/virology , Vasculitis/virology
9.
Dtsch Med Wochenschr ; 145(15): 1063-1067, 2020 Jul.
Article in German | MEDLINE | ID: covidwho-707541

ABSTRACT

The SARS-CoV-2 pandemic has rapidly spread around the world and has led to a substantial morbidity and mortality in many countries. Although Corona Virus Disease 19 (COVID-19) is primarily a respiratory tract infection, there is growing evidence that other organs including the cardiovascular system are affected by COVID-19. In this review, we summarize the association of myocardial injury with in-hospital mortality of COVID-19 patients. Furthermore, we discuss potential mechanisms of myocardial injury including myocarditis and vascular thrombosis. Last, we review the current evidence on drugs which have been evaluated or are currently tested for the treatment of COVID-19 patients.


Subject(s)
Betacoronavirus , Cardiovascular Diseases/virology , Coronavirus Infections/complications , Pneumonia, Viral/complications , Adenosine Monophosphate/adverse effects , Adenosine Monophosphate/analogs & derivatives , Adenosine Monophosphate/therapeutic use , Alanine/adverse effects , Alanine/analogs & derivatives , Alanine/therapeutic use , Antiviral Agents/adverse effects , Antiviral Agents/therapeutic use , Arteritis , COVID-19 , Coronavirus Infections/drug therapy , Coronavirus Infections/physiopathology , Humans , Pandemics , Pneumonia, Viral/drug therapy , Pneumonia, Viral/physiopathology , SARS-CoV-2 , Venous Thrombosis
10.
Circulation ; 142(12): 1176-1189, 2020 09 22.
Article in English | MEDLINE | ID: covidwho-696368

ABSTRACT

BACKGROUND: Severe acute respiratory syndrome corona virus 2 infection causes severe pneumonia (coronavirus disease 2019 [COVID-19]), but the mechanisms of subsequent respiratory failure and complicating renal and myocardial involvement are poorly understood. In addition, a systemic prothrombotic phenotype has been reported in patients with COVID-19. METHODS: A total of 62 subjects were included in our study (n=38 patients with reverse transcriptase polymerase chain reaction-confirmed COVID-19 and n=24 non-COVID-19 controls). We performed histopathologic assessment of autopsy cases, surface marker-based phenotyping of neutrophils and platelets, and functional assays for platelet, neutrophil functions, and coagulation tests, as well. RESULTS: We provide evidence that organ involvement and prothrombotic features in COVID-19 are linked by immunothrombosis. We show that, in COVID-19, inflammatory microvascular thrombi are present in the lung, kidney, and heart, containing neutrophil extracellular traps associated with platelets and fibrin. Patients with COVID-19 also present with neutrophil-platelet aggregates and a distinct neutrophil and platelet activation pattern in blood, which changes with disease severity. Whereas cases of intermediate severity show an exhausted platelet and hyporeactive neutrophil phenotype, patients severely affected with COVID-19 are characterized by excessive platelet and neutrophil activation in comparison with healthy controls and non-COVID-19 pneumonia. Dysregulated immunothrombosis in severe acute respiratory syndrome corona virus 2 pneumonia is linked to both acute respiratory distress syndrome and systemic hypercoagulability. CONCLUSIONS: Taken together, our data point to immunothrombotic dysregulation as a key marker of disease severity in COVID-19. Further work is necessary to determine the role of immunothrombosis in COVID-19.


Subject(s)
Coronavirus Infections/diagnosis , Pneumonia, Viral/diagnosis , Respiratory Insufficiency/etiology , Betacoronavirus/genetics , Betacoronavirus/isolation & purification , Blood Coagulation Disorders/diagnosis , Blood Coagulation Disorders/etiology , Blood Platelets/cytology , Blood Platelets/metabolism , Blood Platelets/pathology , COVID-19 , Case-Control Studies , Coronavirus Infections/complications , Coronavirus Infections/pathology , Coronavirus Infections/virology , Extracellular Traps/metabolism , Humans , Kidney/pathology , Lung/pathology , Neutrophils/cytology , Neutrophils/metabolism , Neutrophils/pathology , Pandemics , Phenotype , Platelet Activation , Pneumonia, Viral/complications , Pneumonia, Viral/pathology , Pneumonia, Viral/virology , Respiratory Insufficiency/diagnosis , SARS-CoV-2 , Severity of Illness Index , Thrombosis/complications , Thrombosis/diagnosis
11.
J Cardiovasc Pharmacol Ther ; 25(6): 497-502, 2020 11.
Article in English | MEDLINE | ID: covidwho-671676

ABSTRACT

In recent months, the new coronavirus SARS-CoV-2 has emerged as a worldwide threat with about 4.2 million confirmed cases and almost 300 000 deaths. Its major clinical presentation is characterized by respiratory symptoms ranging from mild cough to serve pneumonia with fever and potentially even death. Until today, there is no known medication to improve clinical symptoms or even prevent or fight the infection. The search for a useful vaccination is ongoing and it will probably not be available before the end of 2020. In this review, we highlight hydroxychloroquine (HCQ) as a potential agent to prevent coronavirus disease 2019 (COVID-19) and reduce as well as shorten clinical symptoms. Moreover, it might serve as a potential post-exposition prophylaxis. Although it has been used in the treatment of rheumatoid arthritis, discoid or systemic lupus erythematosus, and malaria prophylaxis and therapy for decades, knowledge on HCQ as a potential treatment for COVID-19 is limited and multiple clinical trials have just emerged. Especially, rare HCQ side effects which were of minor importance for use in selected indications might gain major relevance with population-wide application. These rare side effects include retinopathy and-even more important-QT prolongation leading to sudden cardiac death by malignant arrhythmias.


Subject(s)
Coronavirus Infections/drug therapy , Hydroxychloroquine/therapeutic use , Pneumonia, Viral/drug therapy , Arrhythmias, Cardiac/chemically induced , Betacoronavirus , COVID-19 , Coronavirus Infections/immunology , Humans , Hydroxychloroquine/adverse effects , Hydroxychloroquine/pharmacology , Pandemics , Pneumonia, Viral/immunology , Randomized Controlled Trials as Topic , Retinal Diseases/chemically induced , SARS-CoV-2 , COVID-19 Drug Treatment
SELECTION OF CITATIONS
SEARCH DETAIL